A Discrete Choquet Integral for Ordered Systems
نویسندگان
چکیده
A model for a Choquet integral for arbitrary finite set systems is presented. The model includes in particular the classical model on the system of all subsets of a finite set. The general model associates canonical nonnegative and positively homogeneous superadditive functionals with generalized belief functions relative to an ordered system, which are then extended to arbitrary valuations on the set system. It is shown that the general Choquet integral can be computed by a simple Monge-type algorithm for so-called intersection systems, which include as a special case weakly union-closed families. Generalizing Lovász’ classical characterization, we give a characterization of the superadditivity of the Choquet integral relative to a capacity on a union-closed system in terms of an appropriate model of supermodularity of such capacities.
منابع مشابه
Generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making
The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...
متن کاملOn the moments and distribution of discrete Choquet integrals from continuous distributions
We study the moments and the distribution of the discrete Choquet integral when regarded as a real function of a random sample drawn from a continuous distribution. Since the discrete Choquet integral includes weighted arithmetic means, ordered weighted averaging functions, and lattice polynomial functions as particular cases, our results encompass the corresponding results for these aggregatio...
متن کاملOutput Distribution of Choquet Integral
In this paper we show how the distribution of the discrete Choquet integral can be analytically computed. The advantage of having an analytical expression is that the value of the cumulative distribution function (cdf) can be computed exactly for the Choquet. We also derive an expression for the density of the Ordered Weighted Average (OWA) operator, which is a special case of the Choquet.
متن کاملProbit and nested logit models based on fuzzy measure
Inspired by the interactive discrete choice logit models [Aggarwal, 2019], this paper presents the advanced families of discrete choice models, such as nested logit, mixed logit, and probit models to consider the interaction among the attributes. Besides the DM's attitudinal character is also taken into consideration in the computation of choice probabilities. The proposed choice models make us...
متن کاملAxiomatizations of Signed Discrete Choquet integrals
We study the so-called signed discrete Choquet integral (also called non-monotonic discrete Choquet integral) regarded as the Lovász extension of a pseudo-Boolean function which vanishes at the origin. We present axiomatizations of this generalized Choquet integral, given in terms of certain functional equations, as well as by necessary and sufficient conditions which reveal desirable propertie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fuzzy Sets and Systems
دوره 168 شماره
صفحات -
تاریخ انتشار 2011